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We study, using master equation techniques, the time evolution of the average 
concentration and fluctuations in the two-species n-molecule reaction 
A + ( n -  1 )X,~-nX in one dimension described by a Glauber-type dynamical 
lattice model for the specific cases n = 2 (bimolecular) and n = 3 (trimolecular). 
The evolution is found to be quite different from that described by the Mean- 
Field equations even for tile bimolecular case, where the steady state is mean- 
field. For the trimolecular process, the values of fluctuation correlations in the 
nonequilibrium steady state are well predicted by the fixed points of the dynami- 
cal equations obtained from the master equation. In addition, three-point fluc- 
tuation correlations are found to play an important role in both processes and 
are accounted for by an extended Bethe-type ansatz. The bimolecular system 
shows no memory effects of initial conditions, while the trimolecular system is 
characterized by memory effects in terms of the average concentration, fluctua- 
tions as well as the entropy. The spatial decay of fluctuation correlations is 
found to be short range at the steady state for the trimolecular system. 

KEY WORDS: Low-dimensional systems; master equations; mean-field 
theory; nonequilibrium systems; nonlinear dynamics; chemical reactions. 

1. I N T R O D U C T I O N  

A la rge  n u m b e r  o f  i m p o r t a n t  p h y s i o c h e m i c a l  p rocesses ,  (~) f r o m  h e t e r o -  

g e n e o u s  ca ta lys i s  to  the  r eac t iv i ty  o f  p o l y m e r s ,  a re  f o u n d  to  o c c u r  in  

l o w - d i m e n s i o n a l  spaces.  T h e  c r o s s o v e r  f r o m  l a t t i c e - d e p e n d e n t  b e h a v i o r  a t  

l ow d i m e n s i o n s  to  m e a n - f i e l d  ( M F )  b e h a v i o r  a t  h i g h e r  d i m e n s i o n s  is a n  

issue c o m m o n  to  m a n y  di f ferent  k i n d s  of  s ta t i s t ica l  sys tems ,  r a n g i n g  f r o m  
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spin models t21 to random walks ~3~ and should therefore be of considerable 
interest to the field of reactive systems ~4~ as well. This crossover occurs at 
a characteristic critical dimension d,,, commonly referred to as the upper 
critical dimension. 

In recent work, ~7~ the asymptotic steady state of the two species 
n-molecule process 

.4 + (11 - 1)X.-~- nX (1) 

has been studied simulationally for n = 3 using a lattice model and found 
to approach the mean-field one (i.e., containing an equal number of A and 
X particles) as the coordination number z of the lattice approaches 4. Thus, 
the upper critical dimension is here replaced by an upper critical coordina- 
tion number that depends on II. The steady state in one dimension ( z =  2) 
has in particular been observed 16~ to correspond to the equilibrium MF 
state for 11 = 2 (bimolecular), while for 11 = 3 (trimolecular), the system was 
found to freeze into a nonequilibrium state, described by a well-defined 
relative concentration of A and X particles. We emphasize that these 
bimolecular and trimolecular models are prototypes of a wide class of 
nonlinear stochastic processes, exhibiting quadratic and cubic non- 
linearities, respectively. A study of their behavior is thus an important step 
toward a better understanding of the dynamics of these processes in 
general. The above crossover phenomenon can be viewed in the context of 
an interplay between lattice coordination number z and the degree of non- 
linearity n. 

Our aim in this paper is to study the dynamics of these systems and 
to explore the nature of correlations in the steady state. In particular, we 
will look at the asymptotic approach to equilibrium or to a nonequilibrium 
frozen state, as the case may be, and the evolution of fluctuations that 
describe the deviation from MF behavior for these processes. To this end, 
we shall adopt a master equation approach to obtain the dynamical equa- 
tions that govern the evolution with time of the average concentration and 
the fluctuation correlations. We note that the birth-and-death master equa- 
tion usually applied in the stochastic description of chemical reactions does 
not take into account the lattice geometry and is thus not appropriate for 
the purpose of this investigation. We believe that the formalism we develop 
here to study this crossover between MF and nonequilibrium behavior and 
the dynamics of the fluctuations that lead to it is very easily generalizable 
to the study of a wide variety of related problems. 

The master equation approach we shall adopt for our lattice model is 
a variation on the one due to Glauber, 151 originally proposed to analyze 
the dynamics of the one-dimensional Ising model. In Section 2 we 
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introduce this model and deduce explicitly the form of the transition 
probabilities by applying the local dynamical rules determined by the 
chemical process in question. We also derive the equations that describe 
the evolution with time of the average concentration and the correlations 
of the bimolecular and trimolecular processes in one dimension. These 
equations are not closed, as was found to be the case for those describing 
the corresponding quantities for the Ising model in ref. 5; one therefore 
needs to identify a valid truncation scheme to solve them. In Section 3 we 
identify such a truncation scheme and subsequently obtain a coupled set of 
equations for the average concentration and the fluctuation correlation 
between sites at distance n from each other. We discuss the solutions, the 
deviation from mean-field behavior for these processes, and the importance 
of three-point fluctuation correlations. The approach to equilibrium is 
found to be non-MF even for the bimolecular system, where the steady 
state is the same as that described by the MF equations. 

In Section 4 we introduce a new scheme for solving the dynamical 
equationsi this is also a hierarchical method, but does not involve trunca- 
tion of fluctuations beyond some order. The first step of this hierarchy is 
in the spirit of the Bethe ansatz (we shall refer to it as "Bethe-type ansatz" 
in the rest of this work) and concentrates on two particles; we then extend 
the hierarchy to a larger number of particles while retaining all orders of 
fluctuation correlations between them. We find that the solution describes 
the behavior of the full bimolecular system substantially better than the 
truncation scheme of Section 3, due to the retention of higher order short- 
range fluctuation correlations, while neglecting long-range pair correlations. 

Next in Section 5 we make some observations regarding the temporal 
relaxation behavior of the various quantities obtained from simulations. 
We also study the domain-size distribution and the related static and 
dynamic pattern entropies ~SJ for an alternative view of the ordering and 
relaxation of the processes in question. 

In Section 6 we investigate further the nature of the asymptotic steady 
state in terms of the spatial organization of the particles. We make use of 
the g-approximation ~91 to study further the nonequilibrium steady state for 
the trimolecular process, particularly the spatial decay of fluctuation 
correlations. 

The main conclusions are drawn in Section 7. 

2. THE  M O D E L  

Consider a set of N spinlike variables ai = +_ 1 arranged on the sites i of 
a one-dimensional chain or ring. Starting from some arbitrary initial state, 
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the evolution of the probability distribution P({tr}; t) of the set variables 
{a} = (tr~ ..... trj ..... aN) with time is described by the master equation tS) 

t)= - Z  wA{ } --' t) t) 
dt J 

+ E  --, {o}, t) (2) 
J 

where we denote by {a'} the state (a, ..... - t r j  ..... cru) and wj({cr} --* {a'}, t) 
represents the transition probability per unit time from the state { tr} to the 
state {or'} at time t: thus its value is always either zero (when the reaction 
is not allowed) or positive (proportional to the rate of the reaction). 
Furthermore, it is clear from Eq. (2) that wj must obey the condition of 
detailed balance at equilibrium. 

Multiplying Eq. (2) by trk and summing over all the {tri} for i ~ k ,  we 
obtain the equation for the evolution of the order parameter or average 
spin qk( t) = ( trk( t) ) : 

dqk(t_____))= _2(t rk( t  ) wk({a} --~ {tr'}, t ) )  (3) 
dt 

and similarly the time evolution of the pair-correlation function rjk(t)= 
(aj(t)  ak(t)) is described by (for j : / :k)  

drip(t) 
dt 

2(aj(t)ak(t)[wj({tr} ~ {a'}, t)+Wk({a} ---" {tr'}, t ) ] )  (4) 

with j =  k corresponding to the trivial case r~(t)= 1 for all t. 
So far, the above formalism is completely general, i.e., we have made 

no assumptions about the nature of the local dynamics of the system as 
expressed in the form of the transition probabilities wj. Now we start to 
apply this formalism to our system of two-species n-molecule chemical 
reactions given by (1): the configuration {tr;} of the system at any time t 
is then a one-dimensional lattice each site i of which is occupied by either 
an A(ai= +1) or an X(cr i= --1) particle. The average value of the spin 
q(t) = (1/N) Z~= i (a i ( t ) )  then corresponds to the difference between the 
average concentrations of A and X particles q(t)= CA(t)--Cx(t)  on this 
fully occupied lattice, normalized to CA(t) + C x( t ) = 1. 

For the sake of simplicity, we assume both the forward and backward 
reactions in (1) to occur at a rate of unity. In this paper, we shall explicitly 
consider the (i) bimolecular (11 = 2) and (ii) trimolecular (n = 3) cases; these 
are actually the interesting cases for the one-dimensional system z = 2, 
which should cross over to MF behavior at n = 2. 
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2.1. B imolecular  React ion 

This is realized as follows: at each time step, the particle at site i picks 
with a probabi l i ty  of  1/2 one of its neighbors j ( j  = i + 1 or  i -  1) to react 
with. I f  this neighbor j is an X particle (trj = - 1 ) ,  then the particle at i 
changes state tr; ~ - ai. The time evolution of the concentrat ion difference 
q( t )  from simulating this process is shown in Fig. 1 for two different 
r a n d o m  initial states with concentrat ion q(0) = 0.5 and q(0) = - 1, i.e., one- 
fourth ,t" particles and all X particles, respectively. 

In terms of Eq. (2), this process can be described by the transit ion 
probabil i ty  

w j ( { ~ r }  --~ { o " } ,  t )  = �89 - -  �88 [o ' j_  , ( t )  -I- c r j+  , ( t ) ]  (5) 

Substituting (5) in (3), we obtain for the average concentrat ion dif- 
ference 

dqk(t ) 1 
dt qk(t) +~ [rk--l,,(t)+rk, k+l(t)] (6) 

As for the average pair  correlation r j , ( t ) =  <a j ( t ) ak ( t )>  for j # k ,  we 
get from (4) 

&~'k(t) = dt  - - 2 r j k ( t ) + l  [ t j - - l J ' k ( t ) + t J j + l k ( t ) + t j k - - l ' k ( t ) + t J ' k ' k + l ( t ) ]  . , . (7) 
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Fig. 1. Evolution of the concentration difference q(t) in the bimlecular system: simulations 
(S) for N =  10,000, mean-field solution (MF), and solutions of coupled hierarchy (CH2, 3, 5) 
for two different random initial states q(0)=0.5 and q ( 0 ) = -  1. 
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where now the three-point correlations t u , ( t ) = ( t r ~ ( t ) t r j ( t ) t r k ( t ) )  have 
entered the picture. 

2.2.  T r i m o l e c u l a r  R e a c t i o n  

For  this case, at each time step, the particle at site i changes state if 
both its neighbors are X particles, i.e., a;_+~ = - 1 .  The time evolution of  the 
concentration difference from simulating this process is shown in Fig. 2 for 
the same two initial states as in Fig. 1 for the bimolecular process. The 
transition probability of this reaction can be written 

WE({ cr} -+ { a ' } ,  t) = �88 1 - o-+_ , ( t ) ]  [ 1 - % +  , ( t ) ]  (8) 

Once again, f rom (8), (3), and (4) we ob ta in  the f o l l ow ing  two  equa-  
t ions for the time evolution of  the average concentration difference and the 
average pair correlation, respectively: 

dqk 1 1 
dt - 2 q k ( t ) + 2  [ r k - I ' k ( t ) + r k ' k + l ( t ) - t k - l ' k ' k + l ( t ) ]  

dt 

1 
- - t~k ( t )  + -~ [ t j _  l .zk(t)  + tj, j+  i.k(t) + t i .k ,  ,,k(t) + tj.k.k + i ( t ) ]  

(9) 

! 
- }  [sj_ ~,j,j + ~.~(t) + Sj.k_ ~.*,k + l( t )]  

with the four-point correlations Sok ~ now entering the picture. 

(10) 
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Fig. 2. Evolution of the concentration difference q(t) in the trimolecular system: simulations 
(S) for N= 10,000, mean-field solution (MF), and solutions of coupled hierarchy (CH2, 3, 5) 
for two different random initial states q(0)= 0.5 and q(0)= -1. 



Fluctuations in Low-Dimension Reactive System 303 

We note that for both reaction schemes described above, the transition 
probability at the site i is independent of the state of the particle at that site 
itself and depends only on those of its nearest neighbors. The former fact 
is due to the hard-core nature of the underlying microscopic interactions in 
our model and to the assumption of equal reaction rates for the forward 
and backward reactions in (1); the latter reflects the essentially short-range 
nature of the reactive dynamics. In principle, the hard-core assumption can 
be avoided by realizing the reactions of Eq. (1) differently: several particles 
can be allowed to coexist at a single site and the reactions carried out on 
the site. This would result in the transition probability at site j depending 
on the state of particles at site j. However, such a realization would neglect 
the role of dimensionality or coordination number, precisely the properties 
that we are interested in focusing on. 

Owing to the above-described structure of the transition probabilities, 
the dynamical evolution equations (6), (7), (9), and (10) for each subse- 
quent moment of the probability distribution depend on higher moments. 
This makes the exact solution of the time-evolution equations impossible 
for these systems, unlike in the Glauber solution for the Ising model, ~5~ 
where the time-dependent behavior was governed by closed equations. 

3. THE COUPLED HIERARCHY OF D Y N A M I C A L  EQUATIONS 

We now introduce the fluctuation correlation function 

f~,(l)  = (~O' i (1)  Jai+,,(t)) (11) 

with Ja~ = a ~ - ( a )  and variance given by 

fo(t) = 1 -- q2(t) (12) 

for all t. 
We shall assume translational invariance from here on, implying that 

the fluctuation correlations depend only on the distance n between the sites 
in question as in ( 11 ), and that qk(t) = q(t) is independent of position k in 
the thermodynamic limit N--* oo. However, before going further, we should 
briefly mention that the dynamical equations (6) and (9) are extremely rich 
in structure and can admit wavefront solutions on retention of the spatial 
or k dependence of qk(t), an aspect that is being investigated currently in 
a separate work. 

The evolution in time of the nearest neighbor (nn) fluctuation correla- 
tions f l ( t )  obtained from simulations of the bimolecular and trimolecular 
processes is shown in Fig. 3 and 4, respectively. These are once again for 
the two different initially uncorrelated states q(0)=0.5 and q ( 0 ) = - 1 . 0 ,  
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Fig. 3. Evolution of nn fluctuation correlations f~(t) in the bimolecular system: simulations 
(S) for N =  10,000, truncation with MF solution (TMF), and solutions to coupled hierarchy 
(CH2, 3, 5) for two different random initial states q (0)=  0.5 (upper curves) and q ( 0 ) = -  1 
(lower curves). 
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Fig. 4. Evolution of  nn fluctuation correlations f t ( t )  in the trimolecular system: simulations 
(S) for N =  10,000, truncation with M F  solution (TMF) ,  and solutions to coupled hierarchy 
(CH2, 3, 5) for two different random initial states q (0 )=  0,5 (upper curves) and q(0)=  - 1  
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both withft(0)  = 0. A comparison of Figs. 2 and 4 with Figs. 1 and 3 shows 
immediately the intrinsic difference between the bimolecular and tri- 
molecular processes: in the former, the system relaxes to a state of zero 
concentration difference q(t) between A and X particles and zero fluctua- 
tion correlation f~(t) for any initial state q(0), whereas in the latter, the 
system shows significant memory effects by freezing into a nonequilibrium 
state characterized by final q(t) and fj(t) that depend on the initial state 
q(0). For both processes, the initial states q(0)> 0, characterized by more 
A than At particles show a positive fluctuation correlation that can be 
explained as follows: since A clusters can only be eaten up from the bound- 
aries, there is a tendency for clustering, resulting in positive correlations. 
The initial states q (0)<0 ,  which contain more X particles on the other 
hand, show negative nn fluctuation correlations, since X clusters can be 
eaten from the middle, resulting in a tendency toward alternating of the 
two species. 

3.1.  B i m o l e c u l a r  Process  

Equation (6) can be rewritten in terms of the fluctuation correlations 
(11) as 

dq(dt t) = q(t)[q(t) - 1 ] + f t ( t )  (13) 

The mean field (MF) equation for q(t) is 

dq 
~-=q(q- 1) (14) 

which is another way of writing the well-known equation of classical 
kinetics 

dCA dCx 
dt dt = C-x-  C,4 C x (15) 

Equation (14) has the solution 

q(t) = (1 - e ' - C )  -I (16) 

where the constant e -C= [ q ( 0 ) - 1 ] / q ( 0 )  with q(0) being the concentra- 
tion difference of the initial state. The MF solution is plotted in Fig. 1 for 
two different initial states and one can observe that it decays to the steady 
state much faster than the actual system, which is affected by nonzero 
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fluctuations at finite times (see Fig. 3), even though the asymptotic state is 
identical to the mean-field one q(t--* oo )=  0. 

On the other hand, Eq. (7) gives the following coupled set of equa- 
tions for the f , ( t ) ,  after truncation of terms of 0(be 3) and higher: 

df~(t) 
2 f l ( t )+q( t )[1-q2( t )]+q( t ) f z ( t )  (17) 

(It 

and for 17 >1 2 

df,(t) 
dt 

2 1 1 - q ( t ) ] f , ( t ) + q ( t ) [ f , _ ~ ( t ) + f , , + , ( t ) ]  (18) 

This effectively infinite sequence of coupled equations can be solved by 
further truncating the hierarchy beyond some finite value of n = m, i.e., 
setting f,,,+ ~(t)= 0 and solving the resulting set of m + 1 coupled equations 
numerically. We tried this for various values of m and found no change in 
the solution for q(t) andf~(t) on increasing m beyond 3 (see Figs. 1 and 3 
for exact form of solutions); we may thus expect thef,,(t) to be short range, 
an observation that will be verified later in this paper. Moreover, while the 
curves to which the solutions tend in this limit m---, ~ are substantially 
closer to those describing the real system than the MF curves were, they 
are still quite far from being an exact solution. We attribute this fact to the 
existence of nonnegligible three-point fluctuations, which were neglected in 
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Fig. 5. Comparative evolution in the bimolecular system of the nn pair fluctuation correla- 
tion ft(t),  the nnn pair fluctuation correlation f2(t) and the nn three-point fluctuation correla- 
tion h(t) ,  all starting from the random initial state with q(0)= - 1 .  
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the truncation scheme used to obtain the coupled hierarchy (17)-(18) 
above. See Fig. 5 for results of the simulation of the evolution of the nn 
three-point fluctuation correlation h(t) = < 6a~_ ~(t) 6a~(t) 6ai + l(t) > that 
verify this assertion. 

3.2. Trimolecular Process 

Similarly, for the trimolecular case, neglecting three-point fluctuations, 
we can rewrite Eq. (9) as follows: 

dq( t ) 1 , 1 
dt ~ q ( t ) [ q ( t ) - l ] - - [ q ( t ) - l ] f ~ ( t ) - ~ q ( t ) f 2 ( t )  (19) 

Thus, we have the MF equation for the trimolecular process 

1 
- ~ =  - - ~ q ( q -  1) 2 (20) 

which again reduces to classical kinetics, giving 

dCa dCx 
= - = 

dt dt 
(21) 

The solution to Eq. (20) is plotted in Fig. 2 along with the actual behavior 
of the system; one sees that neither the asymptotic stable state nor the time 
evolution of the system follows the MF equations. 

For the fluctuation correlations f,,(t), we get from Eq.(10) the 
following set of coupled equations, again after having truncated terms of 
O(6tr 3) and higher: 

df,(t) 
dt = 2[q2(t) - 1 ] f~(t) + q(t)[q(t) + 1 ] f2(t) + q(t)[q(t) - 1 ] [qZ(t) - 1 ] 

(22) 

and for n/> 2 

df .( t ) 
dt - . - [ q ( t ) -  1 ] 2 - q ( t ) [ q ( t ) -  1][f._l(t)+f,,+l(t)] (23) 

Once again, as for the bimolecular case, we solve the coupled equations 
numerically by truncating further at various values of m. We find (see 
Fig. 4) that already at m = 2, there is remarkably good agreement with the 
simulations, both in terms of the non-MF asymptotic stable state and in 

822/82 1-2-20 
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Fig. 6. Comparative evolution in the trimolecular system of the nn pair fluctuation correla- 
tion ft(t), the nnn pair fluctuation correlation f2(t) and the nn three-point fluctuation correla- 
tion h(t), all starting from the random initial state with q(0) = - 1. 

the temporal  evolution toward it. In fact, the solution gets somewhat  worse 
by increasing m, perhaps due to the fact that  this involves including longer 
range pair  correlations while the whole scheme ignores three-point  fluctua- 
tion correlations like h(t) = (&ai_ l(t) &ai(t) &a~+ l ( t ) ) ,  which can be larger 
than the f,(t) for large n. It is shown in Fig. 6 that  in fact this is already 
the case at n = 2. 

3.3. A p p r o x i m a t i o n  of T w o  Coupled Equat ions 

We have found that for both  bimolecular  and tr imolecular processes, 
increasing the order rn of the coupled hierarchy of equations beyond 2 does 
not improve the ability of the equations to describe the actual behavior  of  
the system (see Figs. 1-4). Thus, we restrict ourselves to m = 2  in the 
following discussion, i.e., to the pair  of  equations describing the evolution 
of the average concentrat ion difference q(t) and the nn fluctuation correla- 
t ionf l ( t ) ,  respectively (labeled CH2  in Figs. 1-4), set t ingfo(t)  = 0 for n t> 2. 

For  the bimolecular  process, then, we have the coupled system CH2 

aq 
d t  = q ( q -  1) +f~ (24) 

df_.2= 
dt -2 f l+q(1-q2)  (25) 
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for which the asymptotic steady state (q(t--, oo),f,(t--,  oo)) has only two 
possible solutions: (0, 0) and (1, 0), the first corresponding to the MF 
steady state and the second to the trivial special case of a configuration of 
entirely A particles where nothing evolves. For a rough idea about the 
long-time relaxation of the fluctuation correlation f , ( t ) ,  we substitute the 
MF solution (16) into Eq. (25) for f ,( t) ;  the resulting equation is easily 
solved to give 

q 2 1 q + ~ + k )  (26) 

where the long-time limit t ~  oo, q ~  0 gives f ,  ---, q(l +2q). Thus, we have 

f , ( t  ~ oo ) ---, q(t) (27) 

From (16), q(t-~ o v ) ~ - e  -c ' -c )  and therefore we expect to see expo- 
nential relaxation for both the average concentration difference and the 
fluctuation correlation as wilI be verified in Section 5. The approximate 
solution (26) is also plotted in Fig. 3 and labeled TMF for "truncated with 
mean field". 

For the trimolecular process, on the other hand, we have the coupled 
system CH2 given by 

1 
~t  = - -~ q(q - -  1 )  2 - (q -- 1 ) f ,  (28) 

df__2 = 
dt (q2_  1 ) [ 2 f , + q ( q -  1)] (29) 

which has three possible steady-state solutions: (0, 0), (1,fl)  and 
(q, - � 89  1 )); the first two are, as mentioned before, for the bimolecular 
case, but now we also have the nonequilibrium state characterized by the 
nonzero nn fluctuation correlation 

f ~ ( t - - - ,  oo  ) = - �89 q ( t ) -  1] (30) 

As can be observed in Fig. 4 by comparing the solution for m = 2 with the 
simulations, thig value is very close to the one attained by the actual system 
at the steady state. Also, see Table I for a comparison of values off~ at the 
steady state obtained from various analytical methods described in this 
paper with the value obtained from simulations. Once again, in Fig. 4, the 
curve labeled TMF corresponds to the solution obtained by substituting 
the MF solution for q(t) into Eq. (29) forf , ( t ) .  
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Table I. Values of Average Concentration Difference 
q( oo ) and Average nn Fluctuation Correlation f l (  oo ) at the 
Steady State from Simulation (S lM) ,  Coupled Hierarchy 
of Two Equations [CH2, Eqs. (28) and (29)] ,  and the 
g-Approximation [g-app, Eq. (48)]  for the Trimolecular 

System 

q ( ~ )  fl(o~) 

q(0) SIM CH2 SIM CH2 g-app 

-- 1.0 -0 .447 --0.4385 -0 .306 -0 .315 --0.306 
--0.5 --0.3261 --0.321 --0.204 -0 .212 --0.210 
--0.25 --0.186 --0.182 --0.101 -0 .107 --0.109 

0.25 0.223 0.216 0.067 0.085 0.085 
0.5 0.474 0.458 0.080 0.124 0.117 

Thus, the memory effects present in the trimolecular process can 
already be seen from this simple model of two coupled equations, which 
predicts quite accurately the relation between the fluctuation correlations 
and the average concentration in the frozen asymptotic state. 

4. EXTENDED BETHE-TYPE ANSATZ 

There are other ways of improving on the mean-field analysis that are 
not based on the type of truncations introduced in the previous section; in 
this section we discuss one such alternative method and show its com- 
parative success for the bimolecular case. This method is also a hierarchical 
one: the zeroth order of the hierarchy is, as before, the MF solution; the 
first step is a Bethe-type ansatz. In the MF analysis, we focus on a single 
particle, replacing all the other particles by a single "mean field" in terms 
of their effect on the chosen particle and then solving for the time evolution 
of the average state of the particle. The Bethe-type ansatz (BA) goes a step 
further in focusing on two particles, and again replacing the rest by a mean 
field, thus retaining the correlation between the two chosen particles. Here 
we extend the Bethe-type ansatz to the case of n > 2 particles and show that 
the solution converges to the one describing the behavior of the full 
bimolecular process. 

For our bimolecular model, then, at the master equation level, the MF 
gives (focusing on the state aj of the particle j, replacing the rest of the 
particles by the average state ( a ) )  and abbreviating wj({a}--, {a'}, t) 
by wj, we have 

wj= �89 - (o ' ) )  (31) 
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and we thus once again obtain the MF solution Eq. (14), with q =  ( a j ) ,  
the average concentration difference. Now, for the Bethe-type ansatz, we 
retain aj and aj+l and average over the rest of the spins, thus 

w j =  � 8 9  �88 + a j +  ,) (32) 

1 wj+ �88 +a j )  (33) 

which when substituted in (3) and (4) give respectively for the average 
concentration difference q(t) and the average nn fluctuation correlation 
f l ( t )  = ( a a j  ~aj+ 1> 

aq 1 
dt = q ( q -  1) + ~ f l  (34) 

#1 
- - =  - 2 f ,  + q ( 1 - q - ' )  (35) 
dt 

The solutions to this coupled system are plotted in Figs. 7 and 8, along 
with the actual behavior. 

But now we can extend the Bethe-type ansatz to n consecutive par- 
ticles, thus creating a new hierarchical scheme of equations. The primary 
step in this extension is the n = 3 case: we retain the particles at j - 1 ,  j, 
and j + 1 and all correlations between them, while replacing everything else 
by the mean field. In addition to the quantities q(t) and f , ( t )  as before, 
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Fig. 7. Evolution of the average concentration difference q(t) in the bimolecular system using 
Bethe-type ansatz (BA) and extended Bethe-type ansatz (EBA3, 4) for two different random 
initial states q(0)= 0.5 and q(0)= -1. 
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Fig. 8. Evolution of the average nn fluctuation correlation f l( t)  in the bimolecular system 
using Bethe-type ansatz (BA) and extended Bethe-type ansatz (EBA3,4) for two different 
random initial states q(0)=  0.5 and q (0 )=  - 1 .  

we now have the next nearest neighbor (nnn) pair correlation r2(t)= 
(a j_~t r j+ , )  and the three-point correlation t~(t)=(trj_~ajaj+~) that 
obey the coupled system of four equations 

dq 
d--~= q(q -- 1) +f ,  

- - =  1 
dfldt -2f ,  + q _ ~ q 3 _ ~ q f ,  +~tl  

d•,• --= = - - 2 r ,  + ti + qr, dt - - 

..t__ = - 3 t i  + q2 + f i  + r ,  + qt 1 
dt 

(36) 

Continuing this process to n = 4 particles, we obtain a coupled set of 
seven equations and so on. The solutions to this extended Bethe-type 
ansatz are obtained by solving the coupled equations numerically and are 
plotted in Figs. 7 and 8 for q(t) and f](t)  respectively. They converge 
monotonically towards the actual behaviour as n is increased, and one can 
see that already at n = 4, the agreement is very good for the system with the 
initial state given by q ( 0 ) = -  1, i.e. all X particles, whereas for systems 
with a large number of A particles, the convergence is somewhat slower, 
but still quite evidently toward the actual behavior. 
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We attribute the comparatively better convergence of this method to 
the essentially short-range nature of correlations in the system. A hierarchi- 
cal method in which one improves the approximation by including longer 
range pair-correlations while neglecting from the beginning higher order 
short-range correlations, as was done in Section 3, would have poor con- 
vergence properties for such systems. Our extended Bethe-type ansatz, 
however, improves the approximation by including more spins while 
retaining all orders of correlations between them, which are not negligible 
for such systems in comparison with pair correlations [see Figs. 7 and 8 for 
the simultaneous evolution off l ( t ) ,  fz(t), and <~a~_ 16ai6Gi+ 1> ]" 

5. RELAXATION TO THE STEADY STATE AND 
PATTERN ENTROPY 

In Section 3, we made some qualitative observations regarding the 
relaxation of the average concentration difference q(t) and of the nn fluc- 
tuation correlation f~( t )  toward the steady state in connection with 
Figs. 1--4. In this section, we shall have a more detailed look at the long- 
time relaxation behavior of the two processes. 

Figures 9 and l0 describe the relaxation behavior q ( t - ~ o o )  and 
f l ( t ~  ~ )  for the bimolecular process (for Figs. 9-12, the labels for the 
various curves within a figure are arranged starting from the top to the 
bottom according to the way they are ordered on the right hand extreme 
of the figure). One can see that the long-time behavior is exponential. 
Furthermore, by superposing Fig. 9 on Fig. 10, one verifies that Eq. (27) is 
exactly true at long times; thus q ( t ~  o o ) ~ _ f ~ ( t ~  o o ) ~ e  -p'.  When the 
initial state contains more X particles, the coefficient fl is apparently inde- 
pendent of the initial state, i.e., for q(0)= C A ( 0 ) - C x ( O ) < 0 ,  we have 
fl ~-0.14; however, when there are more A particles in the initial state, the 
relaxation rate is much slower and depends on the initial concentration, 
going to zero when there are only A particles in the system. This slower 
relaxation is due to the fact that reactions can take place only at the 
boundary of A clusters, and we find a kind of crossover in this relaxation 
behavior when we go from X-dominated configurations to A-dominated 
ones. In comparison, the MF solution (14) corresponds to a much faster 
decay rate of fl = 1, independent of the initial state. 

For the trim'olecular system, on the other hand (see Figs. 11 and 12), 
the approach to the steady state appears to be exponential, even at shorter 
times, i.e., q( t ) = q( oo ) + [ q( O ) - q( oo ) ] e -~'  and f ~ ( t ) = f l ( oo ) ( 1 -  e -~'  ), 
with 0c varying continuously from about 2 for an initial state q(0) = 0.5, i.e., 
75 % A particles, to about 2.9 for q (0)=  - 1 ,  i.e., all X particles. Thus, the 
trimolecular system freezes into its nonequilibrium steady state a good 
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Semilog plot of Iq(t)l vs. t for the bimolecular system from simulations for various 
random initial states. 

order of magnitude faster than the bimolecular one relaxes to its equi- 
librium state, as can also be inferred from a comparison of Figs. 1 and 2 
with Figs. 3 and 4. 

Next, we look at the time evolution of pattern entropies associated 
with the distribution of the sizes of domains of the two species of particles: 

Fig. 10. 
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Semilog plot of Ift(t)[ vs. t for the bimolecular system from simulations for various 
random initial states�9 
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Fig. 11. 
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Semilog plot of [q(t)-q(ov)l vs. t for the trimolecular system from simulations for 
various random initial states. 

the stat ic  en t ropy ,  a measu re  o f  the stat ic  complex i ty  o f  the pa t te rn ,  has 

been def ined 18) as 

St, = --~, Q(j) In Q(j) (37) 
J 

where  Q(j) is the p robab i l i t y  tha t  a lat t ice po in t  be longs  to a d o m a i n  of  

Fig. 12. 
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Semilog plot of [fl(t) - f l (  oo)l vs. t for the trimolecular system from simulations for 
various random initial states. 
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Fig. 13. 
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Evolution of static and dynamic pattern entropies in the bimolecular system for 
various random initial states. 

size j. To study the pattern dynamics, we need in addition to look at the 
pattern dynamical entropy given by 

Sa= --~ Q(j) T( j~ k) In T(j---* k) (38) 
j , k  

where T(j--, k) is the probability that a lattice point makes the transition 
from a domain of size j to one of size k. The evolution of Sp and Sa with 

e~ 
s 

LII 

E 
r  

4 f 3.5 'i 

3 

2.5 

24 

1.5 

1 

0.5 " 

0 

I 

q(O)=0.5 - -  
q(0)=0.25 . . . . .  

q(0)=-0.25 . . . . .  
q(O)=-0.5 .......... 

q(O)=-I . . . . .  

~., Static 

Dynamic 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I t I [ 

0 2 4 6 8 10 
t 

Fig. 14. Evolution of static and dynamic pattern entropies in the trimolecular system for 
various random initial states. 
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time for bimolecular and trimolecular processes are shown in Figs. 13 and 
14, respectively, for a variety of different random initial states. In par- 
ticular, the initial state q(0)= - 1  corresponding to all X particles must 
have zero initial static entropy; however, after any finite time step, it attains 
a very high entropy: thus the curves for this initial state appear to originate 
from a point of very high static entropy. 

For the bimolecular process, the static entropies for all the initial 
states approach the same value asymptotically: the value associated with a 
random configuration of an equal number of A and X particles. The 
asymptotic dynamic entropy is also independent of the initial state, once 
again showing the nonexistence of memory effects for the bimolecular 
system. However, as was observed in the relaxation of q ( t )  and f ~ ( t ) ,  the 
approach to the asymptotic value appears to be the same for all q (0)< 0, 
i.e., all initial configurations having more X than A particles. For con- 
figurations having more A particles initially, i.e., q (0)> 0, the approach is 
much slower (see Fig. 13). 

For the trimolecular system (see Fig. 14), we see memory effects in the 
entropies of the asymptotic state that mirror the memory effects found in 
the asymptotic behavior of q ( t )  and f ~ ( t ) .  The static entropy attains its 
asymptotic value within a couple of time steps; however this asymptotic 
value varies continuously with the composition of the initial state, with the 
state q(0)=0.5 that contains the maximal concentration of A particles 
having maximum spatial complexity and maximum temporal freezing (as 
expected, due to frozen A clusters) characterized by high Sp  and low S a .  

6. SPAT IAL  O R G A N I Z A T I O N  IN S T E A D Y  STATE 

We have seen that the bimolecular system is characterized at the steady 
state by zero correlation fluctuation fn for all n, while the trimolecular 
system is characterized by nonzero fluctuation correlations. In this section, 
we will study the spatial decay of the fluctuation correlations in the steady 
state, i.e., the dependence off,,(t --, ov ) on n for the trimolecular system. 

Equation (9) gives at the steady state 

q = r k -  l.k + rk, k+ I - -  tk--  I .k.k+ I (39) 

Similarly, (10) gives 

[2rjk = tj_ I . z k  + ty. j+ I.k + t j .k--  l.* + ty.k.k + I - -  S j _  l.j,j+ l.k - -  S j . k -  l,k.k + I] 

(40) 

TO obtain any further information about the spatial dependence of the' two- 
point correlations f,, at the steady state, we must first make some 



318 Prakash and Nicolis 

approximations for the higher point correlations in (39) and (40). The 
zeroth-order (MF) approximation simply neglects correlations altogether 
and gives for the conditional average 

( al I ak )  = ~ ~riP(ak, al) = ( a )  P(a k) (41) 

implying a completely uncorrelated probability distribution P(ak, a t )=  
P(ak) P(al).  We now invoke the linearization about this zeroth order or 
MF expression, namely the "g-approximation", 19~ which improves on (41) 
as follows 

( trt I ak )  = [ ( a )  + g(k, l ) ( a k -  ( a )  ) ] P(ak) (42) 

with g(k, 1) = (6ak  J a t ) / ( O a  2). The g-approximation (42) has been found 
to be a very useful technique in previous work on the master-equation 
description of reaction-diffusion systems. ~~ It is exact for Gaussian dis- 
tributions. From (42), we can write for the correlations 

rkl= q2 + g(n)( 6a2) (43) 

where g(n) = g(k, 1) for n = ]k - l[, assuming as before that the correlations 
depend only on the distance between the sites. To break down higher point 
correlations, like tk_ I.k.k+ I = (ak - - lakak+ l )  in (39) and (40) in a similar 
manner, we write for l > k 

P(trk-] ,  ak, al) = P(ak_ 1, trk) P,.(atl ak) (44) 

where we have made the assumption of spatial Markovianity, i.e., we have 
assumed that the conditional probability Pc for a t depends only on the 
value ak in the nearest cell and not on that in other cells further away. We 
are then in a position, using Eqs. (43) and (44), to write the three-point 
and higher correlations appearing in (40) as follows for I > k: 

t k . k +  I ,I  ~ t k ,  I - -  I , I  

= q 3 + q ( l - - q Z ) [ g ( 1 ) + g ( n - - 1 ) - - g ( 1 ) g ( n - - 1 ) ]  (45) 

t k -  l . k . I  ='- t k ,  L l  + 1 

= q3 q_ q( 1 - -  q 2 ) [  g( 1 ) + g(n) -- g( 1 ) g(n)] (46) 

S k  -- l , k . k  + 1,1 ~ Sk ,  I - -  I , L I +  1 

=q4 + 2(qZ--q4) g(1) + (q'---q4) g ( n -  1) 

+ (2q 4 -- 3q 2 + 1 ) g( 1 ) g(n -- 1 ) -- (q'- - q4) g( 1 )2 

+ (q2 _ q4) g( 1 )2 g(n -- 1 ) (47) 
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Substituting (43) and (45) in (39), we get the following solution for 
g( 1 ) =f~/( 1 -- q2): 

: 1 1 q - 1  + ( 1 - - q ~  '/2] g(l)= \ l + q J  J (48) 

As it turns out, this expression predicts quite accurately the value of the nn 
fluctuation correlation in the steady state (see Table I for a comparison of 
the values obtained for f~ in the steady state from the different methods 
with the actual values from simulations), 

Having thus evaluated ,f~, we can go further and look at the spatial 
(i.e., n) dependence of f,, in the steady state. Specifically, substituting 
Eqs. (43) and (45)-(48) into (40), we obtain the following recursive 
relation: 

with 

g(n) 
F(q) (49) 

g(17 - 1 ) 

F(q) q q + l - 2 [ ( 1 - q ) ( l + q ) ] ' / 2 +  (50) 
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Fig. 15. Spatial decay of fluctuation correlations f,,(co) at the steady state for three different 
initial states of the trimolecular system. Lines without points indicate results from the 
g-approximation, corresponding lines with points indicate the values from simulations for the 
same initial state q(O). 
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The fact that the ratio in Eq. (49) is independent of n shows that the g(n) 
and therefore the fluctuation correlations f ,  decay exponentially with n and 
are therefore short ranged. This is borne out by simulations (see Fig. 15); 
however, the coefficient F(q) predicted in (50) as characterizing this 
exponential decay is found to consistently describe a slower decay than the 
one actually observed. 

7. D I S C U S S I O N  

We have devised and illustrated here various methods for effectively 
probing the temporal evolution of the average concentration and fluctua- 
tion correlations in reactive systems of low spatial dimension. The for- 
malism developed here is easily generalizable and applicable to the study of 
the dynamics of any lattice model of reactive species in any dimension. 
There is nothing in the structure of the transition probabilities (5) and (8) 
that makes the formalism more appropriate for these cases. The resulting 
equations for the average concentration and the fluctuation correlations 
obtained by inserting the relevant transition probabilities in (3) and (4) can 
be subsequently studied using the various methods described here. We have 
explicitly implemented these methods for the n-molecule reaction of Eq. ( 1 ) 
for the specific cases of interest n = 2 and n = 3 (there is known to be a 
crossover to a mean-field equilibrium steady state between these two 
values, as discussed in Section 1) and shown their comparative success and 
limitations. We started with a master equation description of the dynamics 
based on a lattice model of the Glauber type. The dynamical equations 
were obtained from the master equation first by neglecting terms of order 
higher than 2 in the fluctuations. The hierarchy of equations obtained in 
this way for the pair correlations f,,(t) between sites at a distance n from 
each other does not (in the limit n ~ oo) converge to the real behavior of 
the system, as is verified by simulations. This is shown to be due to the 
existence of substantial three-point fluctuation correlations in both systems. 
However, the pair of coupled equations CH2 for the average concentration 
difference between the species q(t) and the nn fluctuation correlation f,,(t) 
obtained by truncating the hierarchy at n = 2 already describe quite well 
many properties of the systems, such as their long-time relaxation and the 
values of the average concentration difference and fluctuation correlations 
at the steady state. 

To tackle the problem of nonconvergence of the hierarchy of dynami- 
cal equations to the real behavior, we introduced the extended Bethe-type 
ansatz and demonstrated its comparative success for describing such 
systems where higher point fluctuation correlations are of a magnitude 
comparable to the two-point ones, owing to the short-range nature of the 
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latter. The sets of coupled dynamical equations obtained from this 
approach are shown to converge to the actual behavior of the full system 
as the number of particles considered in the ansatz is increased. 

We also probed further the relaxation behavior of both systems by 
detailed simulations that verify long-time exponential relaxation for both 
systems considered and also simulated the evolution of pattern entropies to 
show the dynamics of spatial organization. 

Finally, we had a closer look at the correlations in the steady state of 
the trimolecular system (the bimolecutar system has zero correlations at 
the steady state) and calculated analytically the values of the fluctuation 
correlations at this steady state and found very good agreement with 
simulational results. Our calculations also predict the exponential decay of 
spatial correlations at the steady state, as is verified by simulations. 

We considered in this work only the case of a one-dimensional lattice, 
i.e., of coordination number z = 2, for which the crossover to equilibrium 
behavior occurs at n = 2. We believe, however, that the phenomenon is 
quite general and many results obtained here will apply also to lattices of 
a different coordination number z with the crossover occurring at a dif- 
ferent value of n, but with systems below and above this crossover preserv- 
ing respectively the properties demonstrated here for n = 2 and n = 3 for the 
case z = 2. Moreover, we believe that the formalism used in this work can 
be extended to deal with open systems that continuously exchange particles 
with their surroundings. In particular, we are interested in dealing with 
the Schl6gl models, which contain the additional step X~-B after the 
bimolecular/trimolecular reaction step discussed here. 
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